Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Balancing parenthood with professional demands is a challenge for many sea-going oceanographers. For early-career women considering or navigating motherhood, this challenge can be particularly pronounced by the physical demands and separation required to conduct research at sea. As sea-going scientists in the United States who have recently navigated pregnancy, postpartum, and oceanographic fieldwork, we shed light on these challenges, especially the lack of clear medical and institutional guidance for making informed decisions. We also highlight recent improvements, including the development of vessel-specific guidelines for cruise participation, efforts by institutions to provide childcare funding to researchers while at sea, and recommendations for staying connected to young children while offshore. While this piece refers to "mothers" and "motherhood", the included recommendations and insights are for all individuals who experience pregnancy and postpartum. We hope this article both raises awareness and offers reassurance to other ocean-going mothers that they are not alone, and that a supportive, evolving community of parent researchers exists. Research expeditions are often a crucial component of oceanographic careers and are frequently the primary method of collecting vital data. While the decision to participate in research at sea, like the decision to start a family, is a deeply personal one, we hope to spark a conversation within the community about how to make this decision more informed and inclusive for current (and future) generations.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract Gelatinous zooplankton are increasingly recognized as key components of pelagic ecosystems, and there have been many recent insights into their ecology and roles in food webs. To examine the trophic ecology of siphonophores (Cnidaria, Hydrozoa), we used bulk (carbon and nitrogen) and compound‐specific (nitrogen) isotope analysis of individual amino acids (CSIA‐AA). We collected samples of 15 siphonophore genera using blue‐water diving, midwater trawls, and remotely operated vehicles in the California Current Ecosystem, from 0 to 3000 m. We examined the basal resources supporting siphonophore nutrition by comparing their isotope values to those of contemporaneously collected sinking and suspended particles (0–500 m). Stable isotope values provided novel insights into siphonophore trophic ecology, indicating considerable niche overlap between calycophoran and physonect siphonophores. However, there were clear relationships between siphonophore trophic positions and phylogeny, and the highest siphonophore trophic positions were restricted to physonects. Bulk and source amino acid nitrogen isotope (δ15N) values of siphonophores and suspended particles all increased significantly with increasing collection depth. In contrast, siphonophore trophic positions did not increase with increasing collection depth. This suggests that microbially reworked, deep, suspended particles with higher δ15N values than surface particles, likely indirectly support deep‐pelagic siphonophores. Siphonophores feed upon a range of prey, from small crustaceans to fishes, and we show that their measured trophic positions reflect this trophic diversity, spanning 1.5 trophic levels (range 2.4–4.0). Further, we demonstrate that CSIA‐AA can elucidate the feeding ecology of gelatinous zooplankton and distinguish between nutritional resources across vertical habitats. These findings improve our understanding of the functional roles of gelatinous zooplankton and energy flow through pelagic food webs.more » « less
-
IntroductionA defining aspect of the Intergovernmental Panel on Climate Change (IPCC) assessment reports (AR) is a formal uncertainty language framework that emphasizes higher certainty issues across the reports, especially in the executive summaries and short summaries for policymakers. As a result, potentially significant risks involving understudied components of the climate system are shielded from view. MethodsHere we seek to address this in the latest, sixth assessment report (AR6) for one such component—the deep ocean—by summarizing major uncertainties (based on discussions of low confidence issues or gaps) regarding its role in our changing climate system. The goal is to identify key research priorities to improve IPCC confidence levels in deep ocean systems and facilitate the dissemination of IPCC results regarding potentially high impact deep ocean processes to decision-makers. This will accelerate improvement of global climate projections and aid in informing efforts to mitigate climate change impacts. An analysis of 3,000 pages across the six selected AR6 reports revealed 219 major science gaps related to the deep ocean. These were categorized by climate stressor and nature of impacts. ResultsHalf of these are biological science gaps, primarily surrounding our understanding of changes in ocean ecosystems, fisheries, and primary productivity. The remaining science gaps are related to uncertainties in the physical (32%) and biogeochemical (15%) ocean states and processes. Model deficiencies are the leading cited cause of low certainty in the physical ocean and ice states, whereas causes of biological uncertainties are most often attributed to limited studies and observations or conflicting results. DiscussionKey areas for coordinated effort within the deep ocean observing and modeling community have emerged, which will improve confidence in the deep ocean state and its ongoing changes for the next assessment report. This list of key “known unknowns” includes meridional overturning circulation, ocean deoxygenation and acidification, primary production, food supply and the ocean carbon cycle, climate change impacts on ocean ecosystems and fisheries, and ocean-based climate interventions. From these findings, we offer recommendations for AR7 to avoid omitting low confidence-high risk changes in the climate system.more » « less
-
Our perception of deep-sea communities has evolved as various sampling approaches have captured different components of deep-sea habitats. We sampled midwater zooplankton assemblages in Monterey Bay, California to quantify community composition (abundance and biomass) and biodiversity (at the Order level) across three depth ranges, and the effects of sampling methodology on community parameters. We collected zooplankton using two types of opening-closing trawls [Tucker Trawl and Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS)] and video recordings from a remotely operated vehicle (ROV). We quantified the relative contributions of microbes to community biomass using synoptic water-bottle casts and flow cytometry. Overall, the pelagic community was most similar between the Tucker trawl and ROV (dissimilarity = 52.4%) and least similar between the MOCNESS and ROV (dissimilarity = 65.8%). Dissimilarity between sampling methods was driven by the relative abundances of crustaceans and gelatinous taxa, where gelatinous animals (cnidarians, ctenophores, tunicates) were more abundant in ROV surveys (64.2%) and Tucker trawls (46.8%) compared to MOCNESS samples (14.5%). ROV surveys were the only method that sufficiently documented the most physically delicate taxa (e.g., physonect siphonophores, lobate ctenophores, and larvaceans). Biomass was also one order of magnitude lower in MOCNESS trawls compared to Tucker trawls. Due to these large differences, the relative contributions of microbes to total biomass were substantially lower in Tucker trawl samples (mean = 7.5%) compared to MOCNESS samples (mean = 51%). These results illustrate that our view of planktonic composition and community biomass is strongly dependent on sampling methodology.more » « less
-
Dam, Hans G. (Ed.)Siphonophores (Cnidaria: Hydrozoa) are abundant and diverse gelatinous predators in open-ocean ecosystems. Due to limited access to the midwater, little is known about the diets of most deep-dwelling gelatinous species, which constrains our understanding of food-web structure and nutrient flow in these vast ecosystems. Visual gut-content methods can rarely identify soft-bodied rapidly-digested prey, while observations from submersibles often overlook small prey items. These methods have been differentially applied to shallow and deep siphonophore taxa, confounding habitat and methodological biases. DNA metabarcoding can be used to assess both shallow and deep species’ diets under a common methodological framework, since it can detect both small and gelatinous prey. We (1) further characterized the diets of open-ocean siphonophores using DNA metabarcoding, (2) compared the prey detected by visual and molecular methods to evaluate their technical biases, and (3) evaluated tentacle-based predictions of diet. To do this, we performed DNA metabarcoding analyses on the gut contents of 39 siphonophore species across depths to describe their diets, using six barcode regions along the 18S gene. Taxonomic identifications were assigned using public databases combined with local zooplankton sequences. We identified 55 unique prey items, including crustaceans, gelatinous animals, and fish across 47 siphonophore specimens in 24 species. We reported 29 novel predator-prey interactions, among them the first insights into the diets of nine siphonophore species, many of which were congruent with the dietary predictions based on tentilla morphology. Our analyses detected both small and gelatinous prey taxa underrepresented by visual methods in species from both shallow and deep habitats, indicating that siphonophores play similar trophic roles across depth habitats. We also reveal hidden links between siphonophores and filter-feeders near the base of the food web. This study expands our understanding of the ecological roles of siphonophores in the open ocean, their trophic roles within the ‘jelly-web’, and the importance of their diversity for nutrient flow and ecosystem functioning. Understanding these inconspicuous yet ubiquitous predator-prey interactions is critical to predict the impacts of climate change, overfishing, and conservation policies on oceanic ecosystems.more » « less
An official website of the United States government
